The dual frequency RV-coupling coefficient: a novel measure for quantifying cross-frequency information transactions in the brain
نویسندگان
چکیده
Identifying dynamic transactions between brain regions has become increasingly important. Measurements within and across brain structures, demonstrating the occurrence of bursts of beta/gamma oscillations only during one specific phase of each theta/alpha cycle, have motivated the need to advance beyond linear and stationary time series models. Here we offer a novel measure, namely, the "dual frequency RV-coupling coefficient", for assessing different types of frequencyfrequency interactions that subserve information flow in the brain. This is a measure of coherence between two complex-valued vectors, consisting of the set of Fourier coefficients for two different frequency bands, within or across two brain regions. RV-coupling is expressed in terms of instantaneous and lagged components. Furthermore, by using normalized Fourier coefficients (unit modulus), phase-type couplings can also be measured. The dual frequency RV-coupling coefficient is based on previous work: the second order bispectrum, i.e. the dual-frequency coherence (Thomson 1982; Haykin & Thomson 1998); the RV-coefficient (Escoufier 1973); Gorrostieta et al (2012); and Pascual-Marqui et al (2011). This paper presents the new measure, and outlines relevant statistical tests. The novel aspects of the "dual frequency RV-coupling coefficient" are: (1) it can be applied to two multivariate time series; (2) the method is not limited to single discrete frequencies, and in addition, the frequency bands are treated by means of appropriate multivariate statistical methodology; (3) the method makes use of a novel generalization of the RV-coefficient for complexvalued multivariate data; (4) real and imaginary covariance contributions to the RV-coherence are obtained, allowing the definition of a "lagged-coupling" measure that is minimally affected by the low spatial resolution of estimated cortical electric neuronal activity.
منابع مشابه
The cross-frequency mediation mechanism of intracortical information transactions
In a seminal paper by von Stein and Sarnthein (200), it was hypothesized that “bottom-up” information processing of “content” elicits local, high frequency (beta-gamma) oscillations, whereas “top-down” processing is “contextual”, characterized by large scale integration spanning distant cortical regions, and implemented by slower frequency (theta-alpha) oscillations. This corresponds to a mecha...
متن کاملFractal Bandpass Filter Using Y-shaped Dual-Mode Resonator for C-Band Receiver (Research Note)
In this study, a fractal, Y-shaped dual-mode resonator bandpass filter (BPF) with input-output cross-coupling is introduced. A parallel-coupling feed structure with a cross coupling has been used to generate two transmission zeroes (TZs) near the lower and upper cutoff frequency that can effectively improve the passband edge selectivity. Also, a fractal shaped based on conventional diamond and ...
متن کاملA Novel Small E–Ring Shaped Monopole Antenna with Dual Band-Notch Function for UWB Wireless Communications
This paper presents an E-ring shaped printed monopole antenna for UWB applications with dual notched bands performance. In order to generate single frequency band notch function, we applied a U-ring shaped monopole antenna, and by inserting a rectangular ring in the centre of it an E-ring shaped radiating patch created and a dual band-notch function can be achieved. The measured bandwidth of th...
متن کاملQuantifying phaseeamplitude coupling in neuronal network oscillations
Neuroscience time series data from a range of techniques and species reveal complex, non-linear interactions between different frequencies of neuronal network oscillations within and across brain regions. Here, we briefly review the evidence that these nested, cross-frequency interactions act in concert with linearly covariant (within-frequency) activity to dynamically coordinate functionally r...
متن کاملQuantifying phase-amplitude coupling in neuronal network oscillations.
Neuroscience time series data from a range of techniques and species reveal complex, non-linear interactions between different frequencies of neuronal network oscillations within and across brain regions. Here, we briefly review the evidence that these nested, cross-frequency interactions act in concert with linearly covariant (within-frequency) activity to dynamically coordinate functionally r...
متن کامل